Curriculum
- 19 Sections
 - 339 Lessons
 - 10 Weeks
 
Expand all sectionsCollapse all sections
- Introduction to Business Decision Making3
 - Introduction to Business Analytics23
- 2.11- Definition and Scope of Business Analytics
 - 2.2Business Analytics (BA)
 - 2.3Data Collection and Integration
 - 2.4Data Cleaning and Preprocessing
 - 2.5Descriptive Analytics
 - 2.6Data Exploration and Visualization
 - 2.7Predictive Analytics
 - 2.8Prescriptive Analytic
 - 2.9Optimization and Simulation
 - 2.10Text and Sentiment Analysis
 - 2.11Data Governance and Securit
 - 2.12Business Intelligence (BI)
 - 2.132- Importance of Data-Driven Decision-Making
 - 2.14Informed Decision-Making
 - 2.15Competitive Advantage
 - 2.16Cost Efficiency
 - 2.17Customer Understanding
 - 2.18Risk Management
 - 2.19Strategic Planning
 - 2.20Continuous Improvement
 - 2.21Measurable Outcomes
 - 2.22Case Studies
 - 2.23Rest
 
 - Key Concepts in Business Analytics14
- 3.1Data Collection and Storage
 - 3.2Data Cleaning and Preprocessing
 - 3.3Descriptive Analytics
 - 3.4Predictive Analytics
 - 3.5Prescriptive Analytics
 - 3.6Business Intelligence (BI)
 - 3.7Data Governance and Security
 - 3.8Big Data Analytics
 - 3.9Key Performance Indicators (KPIs)
 - 3.10Data-driven Decision Making
 - 3.11Agile Analytics
 - 3.12Ethics in Analytics
 - 3.13Rest
 - 3.14Case Studies
 
 - Tools and Technologies4
 - Data Types and Sources17
- 5.11- Data Types
 - 5.2Structured Data
 - 5.3Unstructured Data
 - 5.42- Data Sources
 - 5.5Internal Data Sources
 - 5.6External Data Sources
 - 5.73- Data Collection Methods
 - 5.8Surveys and Questionnaires
 - 5.9Observation
 - 5.10Interviews
 - 5.11Sensor Data
 - 5.12Web Scraping
 - 5.13Transaction Data
 - 5.14Social Media Monitoring
 - 5.15Secondary Data Analysis
 - 5.16Case Studies
 - 5.17Rest
 
 - Cleaning and Transformation25
- 6.11- Dealing with Missing Data
 - 6.2Identification of Missing Values
 - 6.3Removal of Missing Values
 - 6.4Imputation of Missing Values
 - 6.5Evaluate the Impact
 - 6.6Documentation
 - 6.7Iterative Process
 - 6.82- Outlier Detection and Treatment
 - 6.9Identification
 - 6.10Removal
 - 6.11Transformation
 - 6.12Winsorizing
 - 6.133- Data Normalization and Standardization
 - 6.14Normalization (Min-Max Scaling)
 - 6.15Standardization (Z-score Normalization)
 - 6.16Robust Scaling (IQR Scaling)
 - 6.174- Feature Engineering Techniques
 - 6.18Binning/Discretization
 - 6.19One-Hot Encoding
 - 6.20Polynomial Features
 - 6.21Interaction Terms
 - 6.22Feature Scaling
 - 6.23Dimensionality Reduction
 - 6.24Case Studies
 - 6.25Rest
 
 - Predictive Modeling with SPSS9
 - Exploratory Data Analysis (EDA) with SPSS16
- 8.1Introduction
 - 8.21- Basic Statistical Analysis
 - 8.3Descriptive Statistics
 - 8.4Frequency Distribution
 - 8.5Central Tendency and Dispersion
 - 8.6Correlation Analysis
 - 8.7Inferential Statistics
 - 8.82- Data Visualization Technique
 - 8.9Histograms
 - 8.10Box Plots
 - 8.11Scatter Plots
 - 8.12Bar Charts
 - 8.13Heatmaps
 - 8.14Pie Charts
 - 8.15Line Chart
 - 8.16When should I use them?
 
 - Statistical analysis with SPSS24
- 9.11- Descriptive Statistics
 - 9.2Measures of Central Tendency and Dispersion
 - 9.3Mean, Median, and Mode
 - 9.4Variability Measures
 - 9.51-2 Frequency Distributions
 - 9.6Histograms
 - 9.7Percentiles and Quartiles
 - 9.81-3 Probability Distributions
 - 9.9Normal Distribution
 - 9.102- Inferential Statistics
 - 9.112-1 Hypothesis Testing
 - 9.12Formulate Hypotheses
 - 9.13Conduct Statistical Tests
 - 9.142-2 Confidence Intervals
 - 9.153-1 Confidence Intervals
 - 9.16Confidence Interval for Mean
 - 9.174-1 Regression Analysis
 - 9.18Simple Linear Regression
 - 9.19Multiple Regression
 - 9.205-1 Correlation Analysis
 - 9.21Pearson Correlation
 - 9.22SPSS Functionality
 - 9.23When should I use them?
 - 9.24Case Studies
 
 - Prescriptive Analytics with SPSS8
 - Business Intelligence and Reporting33
- 11.11- Dashboard and Visualization Design
 - 11.21-1 Principles of Effective Data Visualization
 - 11.3Clarity and Simplicity
 - 11.4Relevance
 - 11.5Consistency
 - 11.6Interactivity
 - 11.7Storytelling
 - 11.8Use of Appropriate Visualization Types
 - 11.9Color Usage
 - 11.10Data Accuracy and Precision
 - 11.111-2 Dashboard Development and Best Practices
 - 11.12Define Objectives
 - 11.13User-Centric Design
 - 11.14Performance Optimization
 - 11.15Responsive Design
 - 11.16Feedback Mechanisms
 - 11.17Regular Updates
 - 11.18Testing and Validation
 - 11.192- Reporting Tools
 - 11.202-1 Introduction to Reporting Tools
 - 11.21Tableau
 - 11.22Power BI (Microsoft Power BI)
 - 11.232-2 Creating Dynamic and Interactive Reports
 - 11.24Data Connection
 - 11.25Report Design
 - 11.26Interactivity
 - 11.27Data Refresh and Automation
 - 11.28Collaboration and Sharing
 - 11.29Security and Access Control
 - 11.30Documentation and Training
 - 11.31Case Studies
 - 11.32Rest
 - 11.33Contact Form
 
 - Decision Making Models34
- 12.11- Rational Decision Making Model
 - 12.2Problem Identification Module
 - 12.3Alternative Generation Module
 - 12.4Alternative Evaluation Module
 - 12.5Alternative Selection Module
 - 12.6Implementation Module
 - 12.7Monitoring and Evaluation Module
 - 12.82- Bounded Rationality
 - 12.9Constraint Recognition Module
 - 12.10Satisficing Objective Module
 - 12.11Heuristic Utilization Module
 - 12.12Risk Assessment Module
 - 12.13Adaptive Learning Module
 - 12.143- Intuitive Decision Making
 - 12.15Intuition Recognition Module
 - 12.16Expertise Utilization Module
 - 12.17Situation Assessment Module
 - 12.18Bias Awareness Module
 - 12.19Supplementary Rational Analysis Module
 - 12.204- Normative Decision Theory
 - 12.21Assumption Identification Module
 - 12.22Criterion Specification Module
 - 12.23Logical Coherence Assessment Module
 - 12.24Rationality Evaluation Module
 - 12.25Decision Prescription Module
 - 12.265- Behavioral Decision Making
 - 12.27Psychological Factors Identification Module
 - 12.28Social Influence Recognition Module
 - 12.29Cognitive Bias Awareness Module
 - 12.30Emotional Influence Module
 - 12.31Heuristic Utilization Module
 - 12.32Bias Mitigation Strategies Module
 - 12.33Case Stdies
 - 12.34Rest
 
 - Risk Management and Uncertainty33
- 13.11- Identifying Risks
 - 13.2Threat Recognition Module
 - 13.3Source Analysis Module
 - 13.4Environmental Scan Module
 - 13.5Risk Cataloging Module
 - 13.6Risk Impact Assessment Module
 - 13.7Risk Probability Assessment Module
 - 13.8Risk Interdependency Analysis Module
 - 13.92- Risk Assessment
 - 13.10Probability Assessment Module
 - 13.11Source Analysis Module:
 - 13.12Environmental Scan Module
 - 13.13Risk Cataloging Module
 - 13.14Risk Impact Assessment Module
 - 13.15Scenario Analysis Module
 - 13.163- Risk Analysis Techniques
 - 13.17Quantitative Analysis Module
 - 13.18Qualitative Analysis Module
 - 13.19Scenario Analysis Module
 - 13.20Sensitivity Analysis Module
 - 13.214- Risk Mitigation Strategies
 - 13.22Avoidance Strategy Module
 - 13.23Reduction Strategy Module
 - 13.24Transfer Strategy Module
 - 13.25Acceptance Strategy Module
 - 13.265- Monitoring and Review
 - 13.27Effectiveness Tracking Module
 - 13.28Risk Identification Module
 - 13.29Adaptation and Adjustment Module
 - 13.30Communication and Reporting Module
 - 13.31Continuous Improvement Module
 - 13.32Case Studies
 - 13.33Rest
 
 - Cost-Benefit Analysis36
- 14.11- Identifying Costs and Benefits
 - 14.2Direct Costs Identification
 - 14.3Indirect Costs Identification
 - 14.4Benefit Identification
 - 14.5Monetary Valuation
 - 14.6Non-Monetary Valuation
 - 14.72- Quantifying Costs and Benefits
 - 14.8Direct Cost Quantification
 - 14.9Indirect Cost Quantification
 - 14.10Benefit Quantification
 - 14.11Complex Analysis and Estimation Techniques
 - 14.123- Discounting Future Costs and Benefits
 - 14.13Time Value of Money
 - 14.14Discount Rate
 - 14.15Discounting Future Costs and Benefits
 - 14.16Inflation Adjustment
 - 14.17Sensitivity Analysis
 - 14.18Net Present Value (NPV)
 - 14.194- Calculating Net Present Value (NPV)
 - 14.20Identifying Cash Flows
 - 14.21Discounting Future Cash Flows
 - 14.22Summing Present Values
 - 14.23Interpreting NPV
 - 14.24Interpreting NPV
 - 14.25Sensitivity Analysis
 - 14.265- Sensitivity Analysis
 - 14.27Identifying Key Variables
 - 14.28Defining Ranges for Variation
 - 14.29Selecting the Sensitivity Analysis Method
 - 14.30Conducting One-Way Sensitivity Analysis
 - 14.31Conducting Multi-Way Sensitivity Analysis
 - 14.32Interpreting Results
 - 14.33Scenario Analysis
 - 14.34Risk Mitigation and Decision-Making
 - 14.35Case Studies
 - 14.36Rest
 
 - Decision Trees and Scenario Analysis2
 - Game Theory and Strategic Decision Making10
 - Ethical Decision Making10
 - Implementation and Monitoring12
 - Decision Making in Cross-functional Teams26
- 19.11- Benefits of Cross-functional Teams
 - 19.2Diverse Perspectives
 - 19.3Specialized Expertise
 - 19.4Improved Decision Making
 - 19.5Enhanced Communication
 - 19.62- Challenges of Decision Making in Cross-functional Teams
 - 19.7Conflicting Priorities
 - 19.8Communication Barriers
 - 19.9Differing Viewpoints
 - 19.103- Dynamics of Decision Making in Cross-functional Teams
 - 19.11Power Dynamics
 - 19.12Group Dynamics
 - 19.13Individual Personalities
 - 19.144- Techniques for Effective Collaboration
 - 19.15Active Listening
 - 19.16Consensus-Building
 - 19.17Conflict Resolution
 - 19.18Tools and Methodologies
 - 19.195- Decision-making Techniques for Cross-functional Teams
 - 19.20Multi-voting
 - 19.21Decision Matrices
 - 19.22RAPID Framework (Responsible, Accountable, Consulted, Informed)
 - 19.23Case Studies
 - 19.24Rest
 - 19.25Exam
 - 19.26Contact Form